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Boosting Algorithms

= Construct strong classifiers out of weak
ones.

g
Slightly better than

Accurate i
[ . guessing )
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Boosting Algorithms

= Construct strong classifiers out of weak
ones.

| . . . \
By combining them into a
powerful “ensemble”
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Boosting Algorithms

= Construct strong classifiers out of weak
ones.

= Intuition: Train many weak classifiers,
each “focusing” on a different part of the
INnput space.

~

Achieved by re-weighing

. the input sample )
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‘ Example : Axis Aligned Lines
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‘ Example : Axis Aligned Lines
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Boosting Algorithms and Margins

= Surprising phenomenon : Even though
the strong classifier gets more
complicated, it does not overfit.
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Boosting Algorithms and Margins

= Surprising phepomenon : Even though
the strong clas ets more
complicated, '

<
Observed in experiments

by Schapire et al.
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Boosting Algorithms and Margins

= Surprising phenomenon : Even though
the strong classifier gets more
complicated, it does not overfit.

N

That is, more weak

. classifiers are involved )
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Boosting Algorithms and Margins

= Surprising phenomenon : Even though
the strong classifier gets more
complicated, it does not overfit.

= Prominent explanation : Margin Theory

PN

4 )
Loosely speaking, the “confidence”

of the classifier on a point.




‘ Margin Theory

s Formally, let H € X — {—1,1} be the
space of weak classifiers, and

S = {(x-,yj)}j,n:1 is the sample used to

train a strong classifier f = )., ¢ a,h.

= The margin of f on the j'" sample point is
defined as 6; := y,f (x;)
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‘ Margin Theory

s Formally, let H € X — {—1,1} be the
space of weak classifiers, and

S = {(x-,yj)}j,n:1 is the sample used to

train a strong classifier f = )., ¢ a,h.

= The mal

defined

_—/

A convex combination of

weak classifiers.
e =

.
)oint IS

J
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‘ Margin Theory

s Formally, let H € X — {—1,1} be the
space of weak classifiers, and

S = {(x-,yj)}j,n:1 is the sample used to

train a strong classifier f = )., ¢ a,h.

= The ma[ f is called a votir{mmnt IS

defined as 0; := y,f (x;)
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‘ Margin Theory

s Formally, let H € X — {—1,1} be the
space of weak classifiers, and

¢ =1

train

(x,,y,)} _ is the sample used to

o

If 0; is positive, then 51gn(f) .- aph.
cIaSS|f|es (x;,y;) correctly. i

= The margin of f OME point is

defined as 6; := y,f (x;)
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‘ Margin Theory

s Formally, let H € X — {—1,1} be the
space of weak classifiers, and

(—
train

o

{(X,-,yi)}r,-r; IS the sample used to
O N

Intuitively, the closer 0;isto 1, |, h.
the more “confident” f is.

= The margin of f onm point IS

defined as 6; := y,f (x;)
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Margin-Based Upper Bounds

= Schapire et al. (1998) showed the
following bound on the error probability of
voting classifiers.

r |yf(x) <0]

P
(x,y)~D
In|H|Inm
< Pr lyf(x)=6]+ 0( )
N

(x,y)~S meo?2
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Margin-Based Upper Bounds

= Schapire et al. (1998) showed the
following bound on the error probability of
voting classifiers.

(x,yP)rND lyf(x) < 0]

— T / mm)

N
The error probability of [ with
respect to the unknown

&\distribution D over X x {—1,1}.
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Margin-Based Upper Bounds

= Schapire et al. (1998) showed the
following bound on the error probability of
voting classifiers.

4 )
The fraction of sample points

(xy)ND[yf( with margin at most 6. )

< Pr [yf(x) <0]+0 lnl}[llnm)

(x,y)~S \l mHZ
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Margin-Based Upper Bounds

= Schapire et al. (1998) showed the

following

Ve

voting cle

Pr
(x,y)~D

lyf (x)jo]\/

< Pr

(x,y)~S

Holds for all voting cIa55|f|ers f
and margins 6 € (0,1]

T

ty of

In|H|Inm
[}’f(x) = 9] + 0 (\j me?2 )

Margin-Based Generalization Lower Bounds for Boosted Classifier




/"

_BJ_ru:a-jn_Rﬂ_agd_Llh_hALRQundS

VO

Pr
(x,y)~D

<

This holds with high probability
over the choice of the m sample

wed the

points
ssiflers.

)

(x) < 0]

P

(x,y

r [yf(x)<6]+0

)

or probability of
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Margin-Based Upper Bounds

= Schapire
following
voting cle

Pr
(x,y)~D

The result gave rise to boosting
algorithms that intentionally
aim to optimize margins

~

ty of

)

lyf(x) < 0]

<

P

(x,y

r lyf(x) <60]+0

)

In|H|Inm
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Margin-Based Upper Bounds

= Breimann (1999) showed the following
bound on the error probability of voting

classifiers.

DT mh?2

LPr @ <01 <0 (lnlm mm)

— zZ

-

-

Holds for all voting classifiers [
where 8 is the minimum margin

~

J
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Margin-Based Upper Bounds

= Breimant

bound

orl over the choice of the m sample

classifier points

J

DT mh?2

LPr @) <0< 0 (lnlm mm)

-
This holds with high probabilitng

g

— zZ

-

-

Holds for all voting classifiers [
where 8 is the minimum margin

~
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Margin-Based Upper Bounds

= State-of-the-Art bounds were given by
Gao and Zhou (2013)

P DFE <01 P [yf(x) <o)

0 1n|i7-[|lnm+ In|H|Inm Pr [vf(x) < 6l
meo? \ mae? (x,y§~5 ACOE
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Pr |yf(x)<0]< P

(x,y)~D

meo?2

In|H|Inm
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|
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(x,y)

/__Bﬂ_r-m_gﬂ_md_LZhnALRQundS

This holds with high probability
over the choice of the m sample
points

Iy <ol

ere given by
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Margin-Based Lower Bounds?

= Despite being studied for over two
decades, the tightness of margin-based
generalization bounds was not settled.

= In fact, no margin-based lower bounds
were known.
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Margin-Based Lower Bounds!

= Our main result shows that any algorithm
A optimizing margins cannot do much
better than the known upper bounds.

Margin-Based Generalization Lower Bounds for Boosted Classifiers



Margin-Based Lower Bounds

= Formally, VN, 6, T There exist a set X and
a hypothesis set H such that for every
large enough m and algorithm A that
optimizes margins there exists a
distribution D for which

oPr fa() <012 Pr [yfa(x) <6

In|H | ln|7—[|
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‘ Margin-Based Lower Bounds

= Formally, VN 0,7 There exist a set X and

are not too large. » d

oPr fa() <012 Pr [yfa(x) <6

In|H | In|H |
_I_

+0 P
H 2 V H 2 (x,y§~5

lyfalx) < 6]
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Margin-Based Lower Bounds

= Formally, VN, 6, T There exist a set X and
a hypothesis set H such that for every

optimi  Small set of weak classifiers,
distrib In |3] = 6(n N )

oPr fa() <012 Pr [yfa(x) <6

col e, ol < 0]
02 ) T s Vfa(x) <
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Margin-Based Lower Bounds

- Formally VN 0,7 There exist a set X and
Over X' x { 1 1} at for every
hm A that
optimizes ma there exists a
distribution D for which

oPr fa() <012 Pr [yfa(x) <6

Y L L C < 0]
82 V 02 (x,y{vSyqu(x)_
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Margin-Based Lower Bounds

= Formally, VN, 6, T There exist a set X and
a hypothesis set H such that for every

m and algorithm A that

argins there exists a

for which

Pr |yf (x)<0]= Pr [yfs(x)<86]

The classifier
returned by A.

(x,y)~D

In|H |
+0 02

_|_

(x,y)~S

\

In|H |
<
82 (X,E{*/S[yqu(x) — H])
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(x,y

Margin-Based Lower Bounds

Formally, VN, 6,7 There exist a set X and
a hypothesis set H such that for every
large enouq’ hm A that
optimizes ISts a
distribution

P)I‘ND[}’faq(x) <0]= (x,l):1))~S[nyq(X) < 0]

Assuming this is
at most 7.

In|H | In|H |

+ Pr [yfa(x) < 0]

+0
82 V 92 (x,y)~S
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(x,y

Margin-Based Lower Bounds

Formally, VN, 6,7 There exist a set X and
a hypothesis set H such that for every
large enouq’ hm A that
optimizes ISts a
distribution

P)I‘ND[}’faq(x) <0]= (x,l):1))~S[nyq(X) < 0]

Assuming this is
at most 7.

In|H | In|H |

+ Pr [yfa(x) < 0]

+0
82 V 92 (x,y)~S
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Summary

= We show margin-based generalization lower
bounds which almost match the best known

upper bounds.

= These bounds essentially complete the theory
of generalization bounds based ob margins
alone.

= Open Question : Are there parameters other

than margin that can be used to better explain
the practical properties of voting classifiers?
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